On Barycentric Constants

نویسندگان

  • FLORIAN LUCA
  • MARÍA TERESA VARELA
  • M. T. Varela
چکیده

Let G be an abelian group with n elements. Let S be a sequence of elements of G, where the repetition of elements is allowed. Let |S| be the cardinality, or the length of S. A sequence S ⊆ G with |S| ≥ 2 is barycentric or has a barycentric-sum if it contains one element aj such that ∑ ai∈S ai = |S|aj . This paper is a survey on the following three barycentric constants: the k-barycentric Olson constant BO(k,G), which is the minimum positive integer t ≥ k ≥ 3 such that any subset of t elements of G contains a barycentric subset with k elements, provided such an integer exists; the k-barycentric Davenport constant BD(k,G), which is the minimum positive integer t such that any subsequence of t elements of G contains a barycentric subsequence with k terms; the barycentric Davenport constant BD(G), which is the minimum positive integer t ≥ 3 such that any subset of t elements of G contains a barycentric subset. New values and bounds on the above barycentric constants when G = Zn is the group of integers modulo n are also given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Barycentric-sum problems: a survey

Let G be a finite abelian group. A sequence in G is barycentric if it contains one element “average” of its terms. We give a survey of results and open problems concerning sufficient conditions for the existence of barycentric sequences. Moreover values and open problems on the k-barycentric Davenport constant BD(k, G), the barycentric Davenport constant BD(G), the strong k-barycentric Davenpor...

متن کامل

Constrained and generalized barycentric Davenport constants

Let G be a finite abelian group. The constrained barycentric Davenport constant BD(G) with s ≥ 2, is the smallest positive integer d such that every sequence with d terms in G contains a k-barycentric subsequence with 2 ≤ k ≤ s. The generalized barycentric Davenport constant BDs(G), s ≥ 1, is the least positive integer d such that in every sequence with d terms there exist s disjoint barycentri...

متن کامل

k-BARYCENTRIC OLSON CONSTANT

Let G be a finite Abelian group of order n. A k-sequence in G is said to be barycentric if it contains an element which is the “average” of its terms. The kbarycentric Olson constant BO(k, G) is introduced as the minimal positive integer t such that any t-set in G contains a k-barycentric set. Conditions for the existence of BO(k, G) are established and some values or bounds are given. Moreover...

متن کامل

Some remarks on barycentric-sum problems over cyclic groups

We derive some new results on the k-th barycentric Olson constants of abelian groups (mainly cyclic). This quantity, for a finite abelian (additive) group (G,+), is defined as the smallest integer l such that each subset A of G with at least l elements contains a subset with k elements {g1, . . . , gk} satisfying g1 + · · ·+ gk = k gj for some 1 ≤ j ≤ k.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012